Colour

Steve Wells

The Colour Spectrum

The light we see is just part of the electromagnetic spectrum which in its entirety includes everything from gamma rays and x-rays to radio waves.

The part of the spectrum to which our eyes are sensitive is just a very small part in the middle. We see it as a range from red to deep blue but this is just how our brains see it. There is nothing intrinsically coloured about light.

In order to understand where colour comes from we need to take a quick look at how the human eye captures colour information.

In the centre of the retina are cells called "cones" (because that's what they are shaped like!) There are three types of cone, each sensitive to a different part of the visible spectrum. Technically they are called S, M and L for short, medium and long wavelengths. We, on the other had think of

The Electromagnetic Spectrum

The Visible Spectrum

The Response of the Human Eye them as Blue, Green and Red (even though the Long cones are actually more sensitive to yellow than to red.) These cones and their sensitivities to red, green and blue is where we get the RGB colour spaces we use in photography.

If you look inside a JPG file, for each pixel there are three numbers which give to the amounts of red green and blue which have to be mixed together to create the required colour. This raises an important question. Exactly which red green and blue are we talking about?

If you imaging going on a country walk in the spring, how many greens can you see? The grass is not the same as leaves on a tree. Sunlit grass is not the same as grass in the shade. There are hundreds of greens. The same goes for red and blue. So, to get accurate colour photographs we need a definition of the particular colours we are talking about.

More of this later.

Colours in Practice

Primary and Secondary Colours

If you ask a painter what the primary colours are she will probably say red, blue and yellow... but, so far we have been talking about red green and blue! Why the difference? Well, primary colours are the colours which can be combined to get other colours. It all depends on how you do the combining.

In photography we effectively start with nothing (black) and add the colours we need. This is an additive process and the primaries are red, green and blue.

A painter, on the other hand shines white light on to a painting to see it. She starts with everything (white) and the pigments remove the colours which are not required. In this subtractive process the primaries turn out to be red, yellow and blue.

There has to be something more linking these different sets of primary colours. Here we have to think about secondary colours. A secondary colour is what is left if you start with everything (white) and remove a primary colour:

- Remove red (primary) from white and you are left with cyan (secondary);
- Remove green (primary) from white and you are left with magenta (secondary);
- Remove blue (primary) from white and you are left with yellow (secondary);

So, what are these new colours magenta, yellow and blue? Well, magenta is close to red, and cyan is a kind of blue. So these secondary colours in photography turn out to be the same as the primary colours for the painter. The reverse is also true.

So, we have two ways to combine colours and a set of primary colours for each. The primary colours in one system turn out to be the secondary colours in the other.

ADDITIVE: Start with BLACK and add colours. Pairs of colours add to produce secondary colours. When you have added everything you get WHITE.

SUBTRACTIVE: Start with WHITE and subtract colours. Pairs of colours subtract to produce secondary colours. When you have subtracted everything you get BLACK.

The Colour Wheel

Here is another way to represent the colours: in a circle.

In this diagram the primaries are arranged round a circle with the corresponding secondary colours opposite them.

So, for example, the secondary of red is cyan. Red and cyan appear on opposite sides of the circle.

blue

Colour Wheel

The colour wheel can be used to identify colours which are in harmony or in contrast. Colours close to each other are in harmony. Those which are far apart are in contrast.

Here are a couple of examples.

Green and Magenta: Opposite sides of the wheel tend to clash

Yellow and Orange: Same side of the wheel tend to harmonise

Defining Colours

WARNING! This section has a lot of sophisticated mathematical theory supporting it. So I will use pictures but there will be a number of unsupported statements. If you want to see the explanation: go to the maths!

Horseshoe made by bending the Visible Spectrum

"Commission Internationale de l'Elcairage" (CIE) Colour Diagram

Earlier we saw the visible spectrum as a line running from blue to red. Now, I want you to imagine this line as a kind of horseshoe.

The colours are the same - follow them round from blue to red.

The theory supporting the shape of this horseshoe shows that the space inside the horseshoe can be filled in with other colours. In theory, all the colours that human eye can see are represented. This diagram is known as the CIE Colour Diagram.

The way there colours are filled in has a special property. If you take any two colours, all the colours you can get by mixing these two colours (additively) are on a straight line between those two colours.

The colours you get by mixing two colours lie on a straight line between those colours.

You can take this a stage further. If you take three colours (a red, a green and a blue, perhaps) forming a triangle, then all the colours you can get by combining the three will appear inside the triangle.

The mathematics behind the CIE diagram allows colours and their combinations to be defined accurately.

Earlier we talked about a JPG file and the three numbers for each pixel which define a particular colour. We also noted that this was not enough. What was needed was a definition of those colours. Well, here is the answer.

All the mixes of the three colours lie inside the triangle.

Colour Spaces a forum for showing off their mathematics. The objective is to take pictures. Pictures exist in the real world. They have to be displayed on a screen, as a print or as a projected image. What is important in each case is not colour theory, but the actual colours which can be reproduced by the real hardware.

Most screens, printers and projectors come close to sRGB. You can get equipment which can display more colours - at a price. Camera Club projectors typically use sRGB. The lab I go to for printing specifies that images should use sRGB.

Of course, there is another point about the real world. When you see an image which uses sRGB, have you ever noticed any colours missing? No, I thought not!

Converting Colour Spaces

Suppose you have an image in Adobe RGB 1998 and a printer using sRGB. What happens to the missing colours?

You need a set of instructions to describe how to make the necessary compromise. This is called a "Rendering Intent".

There are many different Rendering Intents. Many are only relevant to typesetting using CMYK files. Two are relevant to photography:

- Relative Colorimetric

Missing Colours

- Perceptual

Relative Colorimetric Rendering Intent

This approach examines individual colours and transfers without change where possible. Other colours are compromised by moving them to the nearest acceptable colour.

This approach:

- preserves colours where possible
- distorts the extremes

Relative Colorimetric

Perceptual Rendering Intent

The Perceptual Rendering Intent works with the whole space and ignores individual colours. The whole of the source colour space is compressed into the target space. The target space is made smaller to make room. It's a bit like deflating a balloon.

This approach:

- changes all colours slightly
- preserves the relationships between colours

Everything moves.

The whole of the source space is squashed into the target.

[^0]
Real Hardware

So, how close does real hardware (printers, monitors, projectors) come to colour theory. There are inevitable differences. We can get as close as possible by profiling. Profiling identifies the differences between the actual colours displayed or printed and the colours which should appear. These differences are recorded in a small file, known as a profile, which is then used by software such as Windows and Photoshop to correct the colours.

When I profile my monitor the profiling software shows a comparison between my screen and the theory.

Datacolor "Spyder 4" screen showing the results of monitor calibration.

It displays the, by now familiar, CIE diagram with sRGB and my monitor for comparison. At the time I did this particular calibration, the profiling software reported that my monitor was covering about 98% of sRGB. That is actually pretty good. Cheap screens designed for call centres will often show only 70% of sRGB. This does not mean they are bad screens. It means they are designed for a different job.

Colour Temperature

Up until a few decades ago all light sources were created by heating or burning. The exceptions today are fluorescent tubes and LEDs.

When something is heated or burned, the colour of the light depends roughly on the temperature. So, the
 Light Bulb

Colour Temperature

 proposed in 1848 by WilliamThe kelvin temperature scale was body" - an idealised object which absorbs radiation at all frequencies.)

Thomson (later Lord Kelvin) who wrote of the need for a scale whereby "infinite cold" (absolute zero) was the scale's zero point.

We use colours sometimes to describe temperature - think of "red hot" and "white heat". (Emotionally we think of blue as cold and red as warm, but this is wrong: in colour temperature terms, blue is much warmer than red.)

Using the kelvin scale, midday daylight is about 5600 K .
With excellent auto white balance available on most cameras, it is rarely necessary, these days, to worry about the colour temperature of light sources.

A comparison with the CIE Colour Diagram shows that the colour temperature scale covers only a limited set of the colours which the human eye can see. So, for example, apart from red, the colours of the rainbow do not appear on the colour temperature scale.

Despite its limitations, the colour temperature scale is still used as a standard for illumination when comparing colours of images.

If you want to compare colours on a print with colours from the same file displayed on a screen you need to match the illumination. A screen is typically set a little bluer than daylight at about 6500 K. Ideally the print should be illuminated with a lamp at the same temperature. In practice a daylight balanced lamp will do the job - standard domestic lighting will not.

CIE diagram showing the Colour Temperature scale

In Conclusion

The human eye has three colour sensors sensitive to red, green and blue.
A JPG file has three numbers describing the amounts of red green and blue. This is not enough. We need a definition of exactly which red, green and blue we are using. This is where a colour space comes in. A colour space such as sRGB defines exactly which red, green and blue we are talking about. The particular colour space we use is constrained by the real world characteristics of the screen, printer or projector we are using.

Colour temperature is based on light sources which until a few decades ago were created by heating or burning. When something is heated or burned, the colour of the light depends on the temperature. So, the colour can be descruibed by specifying the temperature.

[^0]: Perceptual

